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Abstract

Eisenstein series provide the classical examples of modular forms, with their constant Fourier
coefficients given by Riemann zeta values. In 2006, Gangl, Kaneko, and Zagier introduced dou-
ble Eisenstein series to relate double zeta values to modular forms, and Bachmann (2012) later
generalized this to multiple Eisenstein series. This survey article explores a further general-
ization, called Schur multiple Eisenstein series. These series have Fourier expansions whose
constant terms are Schur multiple zeta values and satisfy certain relations similar to Schur mul-
tiple zeta values, such as the Jacobi-Trudi formula. We also consider some special cases related
to modularity. Further we introduce a certain Hopf algebra which can be used to describe the
Fourier expansion of Schur multiple Eisenstein series.

1 Introduction

This report summarizes some of the results obtained by the author in [Yu], where Schur multiple
Eisenstein series are introduced. These generalize classical Eisenstein series which are examples
of modular form for the full modular group. For an even integer k > 2, and an element τ in the
complex upper half plane ℍ, the Eisenstein series of weight k is defined by

G(k; τ) =
1

2

∑
m,n∈ℤ

(m,n)̸=(0,0)

1

(mτ + n)k
= ζ(k) +

(2πi)k

(k − 1!)

∞∑
n=1

σk−1(n)q
n, q = e2πiτ .

One important result in the theory of modular forms is that Eisenstein series are the fundamental
building blocks of all modular forms. Specifically, every modular form can be expressed as a
polynomial in G(4; τ) and G(6; τ). The second expression is its Fourier series, the coefficients are
divisor function σk(n) =

∑
d|n d

k, and the constant term is the Riemann zeta function ζ(k) =∑∞
m=1

1
mk .

1.1 Multiple zeta values and multiple Eisenstein series

The product of two Riemann zeta values can be expressed as

ζ(r)ζ(s) = ζ(r, s) + ζ(s, r) + ζ(s+ r) (r, s ≥ 2),

ζ(r)ζ(s) =
s+r−1∑
j=2

[(
j − 1

r − 1

)
+

(
j − 1

s− 1

)]
ζ(j, s+ r − j) (2 ≤ j ≤ s+ r

2
),

(1.1)

∗E-mail:jinbo.yu.e6@math.nagoya-u.ac.jp

1



where ζ(r, s) =
∑

0<m<n
1

mrns are called double zeta values, which are known to satisfy a collection
of relations. The relations (1.1) are double shuffle relations. In particular, the first expression for
the product is referred to as the stuffle relation, while the second one is called shuffle relation.
Since the Riemann zeta functions are the constant term of Eisenstein series, the natural question
arises: “Do Eisenstein series also satisfy these relations derived from zeta values?” In 2006 Gangl,
Kaneko and Zagier [GKZ] showed that the structure of the ℚ-vector space of all relations among
double zeta values of weight k is connected in many different ways to the structure of the space of
modular forms Mk of weight k on the full modular group Γ1 = PSL(2,ℤ), by introducing double
Eisenstein series. In 2012, Bachmann [Ba] generalized this idea to multiple version. He studied the
multiple Eisenstein series which are defined by

G(s1, . . . , sr; τ) =
∑

0≺λ1≺···≺λr
λi∈ℤτ+ℤ

1

λs1
1 · · ·λsr

r
(τ ∈ ℍ; si ∈ ℕ≥2, i = 1, . . . , r),

where the order m1τ + n1 ≺ m2τ + n2 means m1 < m2 ∨ (m1 = m2 ∧ n1 < n2). Although not all
multiple Eisenstein series are modular forms, we observe that G(s1, . . . , sr; τ) = G(s1, . . . , sr; τ+1),
which provides the Fourier expansion of multiple Eisenstein series.

Theorem 1.1 ([Ba]). For k1, . . . , kr ≥ 2 there exist explicit αk1,...kr
l1...lr,j

∈ ℤ such that

G(k1, . . . , kr) = ζ(k1, . . . , kr) +
∑

0<j<r
l1+···+lr=k1+···+kr

l1,...,lr≥1

αk1,...kr
l1...lr,j

ζ(l1, . . . , lj)g(lj+1, . . . , lr) + g(k1, . . . , kr).

Here, in the case of Eisenstein series, g(k) represents the generating series of the divisor sums.
For higher depths, multiple versions are defined for k1, . . . , kr ≥ 1 as follows:

g(k1, . . . , kr; τ) = g(k1, . . . , kr) = (−2πi)k1+···+kr
∑

0<m1<···<mr
n1,...,nr>0

nk1−1
1

(k1 − 1)!
. . .

nkr−1
r

(kr − 1)!
qm1n1+···+mrnr ,

where q = e2πiτ . By the Lipschitz formula, the monotangent function Ψ(k; τ) is defined as

Ψ(k; τ) =
∑
n∈ℤ

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∑
d>0

dk−1qd .

In particular, we can replace τ by m1τ, . . . ,mrτ and take the sum over all 1 ≤ m1 < · · · < mr to
obtain

g(k1, . . . , kr) =
∑

0<m1<···<mr

Ψ(k1;m1τ) · · ·Ψ(kr;mrτ) . (1.2)

Also, the constant term corresponds to the multiple zeta values with same index, denoted by
ζ(s1, . . . , sr). For integers s1, . . . , sr−1 ≥ 1 and sr ≥ 2, the multiple zeta values (MZVs) and
multiple zeta-star values (MZSVs) are defined by

ζ(s1, . . . , sr) =
∑

0<n1<···<nr

1

ns1
1 · · ·nsr

r
, ζ⋆(s1, . . . , sr) =

∑
0<n1≤···≤nr

1

ns1
1 · · ·nsr

r
.

Since each term in Fourier expansion of multiple Eisenstein series contains an MZV factor, certain
relations in the ℚ-vector space of all MZVs can be extended to the ℚ-vector space of all multiple
Eisenstein series, such as the double shuffle relation (1.1).



1.2 Algebra setup

To study the double shuffle relations(1.1), Hoffman introduced the quasi-shuffle products [Ho]. Let
L be an alphabet. A monic monomial in the non-commutative polynomial ring ℚ⟨L⟩ is called a
word, and the empty word is denoted by 1. The symbol ⋄ represents a commutative and associative
product on the ℚ-vector space generated by L. The quasi-shuffle product ∗⋄ on ℚ⟨L⟩ is defined as
a ℚ-bilinear product satisfying 1 ∗⋄ w = w ∗⋄ 1 = w for any word w ∈ ℚ⟨L⟩ and

aw ∗⋄ bv = a(w ∗⋄ bv) + b(aw ∗⋄ v) + (a ⋄ b)(w ∗⋄ v) (1.3)

for any a, b ∈ L and words w, v ∈ ℚ⟨L⟩. This defines a commutative ℚ-algebra (ℚ⟨L⟩, ∗⋄), which
is called quasi-shuffle algebra. There have two different alphabets: Lxy = {x, y}, with the product
a ⋄ b = 0 for a, b ∈ Lxy and Lz = {zk|k ≥ 1}, with the product zk1 ⋄ zk2 = zk1+k2 for k1, k2 ≥ 1.
The corresponding quasi-shuffle product of Lxy is � = ∗⋄ referred to as the shuffle product, and
the corresponding quasi-shuffle product of Lz is ∗ = ∗⋄, referred to as the stuffle product.

Let Z be the ℚ-vector space generated by all MZVs, and let H = ℚ⟨Lxy⟩ = ℚ⟨x, y⟩. Define the
subspaces of H as H0 = ℚ+ xHy ⊂ H1 = ℚ+ Hy ⊂ H .

By identifying zk ↔
k−1︷ ︸︸ ︷

x · · ·x y, we can associate ℚ⟨Lz⟩ with H1. In what follows, we consider
them to be equivalent. Using the usual power series multiplication, the linear map defined on the
generators as

ζ : H0 −→ Z ,

zk1 . . . zkr 7−→ ζ(k1, . . . , kr) .
(1.4)

gives a ℚ-algebra homomorphism ζ : (H0, •) −→ Z for • ∈ {∗,�}. That is, for any w, v ∈ H0,
ζ(w)ζ(v) = ζ(w� v) = ζ(w ∗ v). Following the map ζ, elements of H1 correspond the MZVs with
arbitrary indices, while elements of H0 correspond the absolutely convergence MZVs. By combining
(1.3) and (1.4) over H0, we can derive (1.1).

By the work of Hoffman ([Ho][HI]), any quasi-shuffle algebra can be equipped with the structure
of a Hopf algebra using the deconcatenation coproduct ∆dec which splits a word into different parts.
For w, u, v ∈ H1,

∆dec(w) =
∑
uv=w

u⊗ v.

For any Hopf algebra A with coproduct ∆ and a ℚ-algebra B with multiplication m and for
f, g ∈ Hom(A,B), the convolution product is defined as

f ⋆ g = m ◦ (f ⊗ g) ◦∆.

The antipode S : A → A is the inverse of Id with respect to ⋆. In quasi-shuffle algebra (H1, ∗,∆dec),
the antipode S is given by

r∑
i=0

S(zk1 . . . zki) ∗ zki+1
. . . zkr = 0. (1.5)

Acting map (1.4) on (1.5), we obtain

ζ(S(zk1 . . . zkr)) = (−1)rζ⋆(kr, . . . , k1).

Hence, the antipode formula for MZVs can be derived as follows:



Theorem 1.2 ([Ho]). For k1, . . . , kr ≥ 2, we have

r∑
i=0

(−1)r−iζ(k1, . . . , ki) ∗ ζ⋆(kr, . . . , ki+1) = 0.

1.3 Schur MZV and multiple Schur function

Nakasuji, Phuksuwan and Yamasaki [NPY] introduced Schur multiple zeta values, which combi-
natorially interpolate both MZVs and MZSVs. It was first mentioned in [Ya] in the context of
studying multiple Dirichlet L-values. We generalize their construction and introduce the notion of
multiple Schur function as follows:

(i) A partition of a natural number n is a tuple λ = (λ1, . . . , λh) of positive integers λ1 ≥ · · · ≥
λh ≥ 1 with n = |λ| = λ1 + · · ·+ λh. For another partition µ = (µ1, . . . , µr) we write µ ⊂ λ if
r ≤ h and µi ≤ λi for i = 1, . . . , r, and we define (skew) Young diagram D(λ/µ) of λ/µ by

D(λ/µ) =
{
(i, j) ∈ ℤ2 | 1 ≤ i ≤ h , µi < j ≤ λi

}
,

where µi = 0 for i > r. In the case where µ = ∅ is the empty partition (i.e., the unique
partition of zero) we just write λ/µ = λ. In the following we will just focus on the case
µ = ∅, but one should keep in mind that everything also makes sense for arbitrary µ. C(λ) =
{(i, j) ∈ D(λ)|(i+ 1, j), (i, j + 1) /∈ D(λ)} denote the set of corner of Young diagram D(λ).

(ii) For an arbitrary set A and a partition λ denote by YT(λ,A) all Young tableaux with entries
in A:

YT(λ,A) = {(mi,j)(i,j)∈D(λ) | mi,j ∈ A}.

(iii) For a finite totally ordered set X = (X,≺) define the semi-standard Young tableaux for a
partition λ by

SSYT(λ,X ) = {(mi,j) ∈ YT(λ,X) | mi,j ⪯ mi,j+1,mi,j ≺ mi+1,j}.

Here we write a ⪯ b if a ≺ b or a = b.

(iv) Let R be a commutative ℚ-algebra, W an arbitrary set and X a finite totally ordered set.
Then for a function

f : W ×X → R

define the corresponding multiple Schur function for a Young tableaux k = (ki,j) ∈ YT(λ,W )
by

Sf (k) =
∑

(mi,j)∈SSYT(λ,X )

∏
(i,j)∈D(λ)

f(ki,j ,mi,j).



Example 1. In the case R = ℝ, W = ℤ and X = {1, . . . ,M} (with the usual order of natural
numbers) for some M ≥ 1 let

f : ℤ× {1, . . . ,M} −→ ℝ

(k,m) 7−→ 1

mk
,

With this setup, the above definition yields the (truncated) Schur multiple zeta values ζM (k) = Sf (k)

By taking the limit as limM → ∞, Schur multiple zeta values ζ(k) = limM→∞ ζM (k) converges
absolutely whenever k ∈ Wλ, where

Wλ =

{
k = (kij) ∈ SSYT(λ,ℤ)

∣∣∣∣∣ kij ≥ 1 for all (i, j) ∈ D(λ) \ C(λ)

kij > 1 for all (i, j) ∈ C(λ)

}
.

Schur multiple zeta values (Schur MZVs) preserve certain properties of the Schur function, such as
Jacobi-Trudi formula.

Theorem 1.3 ([NPY] Jacobi-Trudi formula). Assume that k = (kij) ∈ SSYT(λ/µ, ) and ki,j = aj−i

for all (i, j) ∈ D(λ/µ). λ′ = (λ′
1, . . . , λ

′
s) = #{j |λj ≥ i}, µ′ = (µ′

1, . . . , µ
′
s) are the conjugate of λ

and µ. Then, we have

ζλ/µ(k) = det
[
ζ(a−µ′

j+j−1, a−µ′
j+j−2, . . . , a−µ′

j+j−(λ′
i−µ′

j−i+j))
]
1≤i,j≤s

. (1.6)

Here, we understand that ζ( · · · ) = 1 if λ′
i − µ′

j − i+ j = 0 and 0 if λ′
i − µ′

j − i+ j < 0.

2 Main Results

Our main results are presented in two parts. In the first part, we introduce some analytic properties
of Schur multiple Eisenstein series, including its precise definition, Fourier expansion, Jacobi-Trudi
formula, and modularity theory. In the second part, we explore the algebraic structure of Schur
multiple Eisenstein series by connecting them to the ℚ-vector space of multiple zeta values. This
result is then extended to the algebraic structure of Young tableaux.

2.1 Schur Multiple Eisenstein series

To define Schur multiple Eisenstein series, we set ℤM = {−M, . . . ,−1, 0, 1, . . . ,M} and consider, for
M,N ≥ 1 and τ ∈ ℍ the set Xτ

M,N = ℤMτ+ℤN . This gives a finite ordered set X τ
M,N = (Xτ

M,N ,≺).
Next, we consider the subset of ”positive” lattice points defined as

Xτ,>0
M,N = {λ ∈ Xτ

M,N | 0 ≺ λ}.

This gives another finite ordered set X τ,>0
M,N = (Xτ,>0

M,N ,≺) We then define the map

f : ℤ×Xτ,>0
M,N → ℝ

(k,mτ + n) 7−→ 1

(mτ + n)k
,



and introduce the (truncated) Schur multiple Eisenstein series for k ∈ YT(ℤ) by GM,N (k) =
Sf . More explicitly, for a partition λ and k = (ki,j) ∈ YT(λ,ℤ), these are defined as

GM,N (k; τ) =
∑

(mi,jτ+ni,j)∈SSYT(λ,X τ,>0
M,N )

∏
(i,j)∈D(λ)

1

(mi,jτ + ni,j)ki,j
. (2.1)

We can now establish the following proposition:

Proposition 2.1. If ki,j ≥ 2 for all (i, j) ∈ D(λ) then the following limit exists

G(k; τ) := lim
M→∞

lim
N→∞

GM,N (k; τ) . (2.2)

This is the definition of the Schur multiple Eisenstein series. If we defined Schur multiple
Eisenstein series without using the limit of summation, the conditions ki,j ≥ 3 ((i, j) ∈ C(λ/µ)),
ki,j ≥ 2 ((i, j) ∈ D(λ/µ)\C(λ/µ)) are necessary for the absolute convergence of the sum. However,
by a similar argument as in [BT], the order of the limits in (2.2) ensures convergence even in the
case where ki,j = 2 for (i, j) ∈ C(λ/µ). This approach aligns with the usual method for defining
the quasi-modular form G(2, τ). The construction of the Fourier expansion described below uses
exactly this Eisenstein summation:

Theorem 2.2 ([Yu], Fourier expansion). For k = (ki,j ;λ/µ) ∈ YT, and q = e2πiτ , there exist
explicit αk

l,h ∈ ℤ such that

G(k) = ζ(k) +
∑

|k|=|l|+|h|

αk
l,hζ(l)g(h) + g(k). (2.3)

Also, we have

G(k) = ζ(k) +
∑

µ⊊η⊊λ

ζ(kη/µ)ǧ(kλ/η) + ǧ(k). (2.4)

In particular,

G(k; τ) = ζ(k) +
∑
n>0

ak(n)q
n for ak(n) ∈ Z[πi].

Here we show two ways to writing the Fourier expansion of th Schur multiple Eisenstein series.
Equation (2.3), analog of theorem1.1, represents the classical form of the Fourier expansion of
Eisenstein series. It extends multiple q-series g(k1, . . . , kr) in (1.2) to the Schur versions, given by

g(kλ/µ) = g(kλ/µ; τ) =
∑

mi,j∈SSYT(λ/µ)

∏
(i,j)∈D(λ/µ)

Ψ(ki,j ;mi,jτ) ∈ ℚ[πi]JqK.

On the other hand, in the summation of (2.1), the terms can be split into two parts based on
whether mi,j = 0 or mi,j ≥ 1. The part where mi,j = 0 is in fact equal a Schur multiple zeta values.
We denote the summation where mi,j ≥ 1 as ǧ.

Using the semi-standard condition, the Young tableau can be divided into two parts: the top-
left part corresponds to ζ, and the bottom-right part corresponds to ǧ. This decomposition gives
rise to (2.4), where the summation in the red region represents Schur MZVs, and the summation
in the blue region corresponds to ǧ in the following figure.



m

n
ζ

ǧ

Figure 1: The region corresponding to the summation of ζ and ǧ

Example 2. For example, the Fourier expansion of G

(
2 2

2

)
can be written as:

G

(
2 2

2

)
= ζ

(
2 2

2

)
+ ζ

(
2

2

)
ǧ
(

2
)
+ ζ

(
2 2

)
ǧ
(

2
)
+ ζ

(
2
)
ǧ

(
2

2

)
+ ǧ

(
2 2

2

)
= ζ

(
2 2

2

)
+ ζ

(
2

2

)
g
(

2
)
+ ζ

(
2 2

)
g
(

2
)
+ ζ(2)g(4) + 4ζ(2)g(2, 2) + g

(
2 2

2

)
.

Proposition 2.3 ([Yu]). The ǧ can be written as a MZV-linear combination of g.

Example 3.

ǧ

(
2 2

2

)
= g

(
2 2

2

)
+ 2ζ(2)g

(
2

2

)
.

Let’s consider a special Young tableau, where all the diagonal variables are the same. In this
case, we can generalize many formulas for Schur polynomials to Schur multiple Eisenstein series,
such as Jacobi-Trudi formula. Following the similar argument of [NPY], we obtain the following
result:

Theorem 2.4 ([Yu], Jacobi-Trudi formula). Schur multiple Eisenstein series also satisfy the
Jacobi-Trudi formula.

Example 4. For example, when λ/µ = (4, 3, 2)/(2, 1), with a, b, c, d, e, f ∈ ℕ≥2, we have

G


d e f

c d

a b

; τ

 = det


G(a; τ) G(d, c, b, a; τ) G(e, d, c, b, a; τ) G(f, e, d, c, b, a; τ)

1 G(d, c, b; τ) G(e, d, c, b; τ) G(f, e, d, c, b; τ)
0 G(d; τ) G(e, d; τ) G(f, e, d; τ)
0 0 1 G(f ; τ)

 .

Lemma 2.5 ([Yu]). For k ≥ 2, we have

exp

∑
i≥1

(−1)i−1

i
G(ik; τ)Xi

 =

∞∑
n=0

G(k, . . . , k︸ ︷︷ ︸
n

; τ)Xn.

Lemma 2.5 is an application of Hoffman-Ihara’s [HI] result. It allows us to rewrite the multiple
Eisenstein series with the index that all variables are k, as a polynomial in the Eisenstein series with



index k × l for l ∈ ℕ. By choosing a special case where Young tableau with all variables are same,
Corollary 2.4 tell us that these Schur multiple Eisenstein series can be written as a polynomial of
multiple Eisenstein series with same variables. By lemma 2.5, it can also be written as a polynomial
of Eisenstein series with multiple indices. On the other hand, we have the following relations:

G(2; τ) = G ( 2 ; τ) , G(4; τ) = G ( 2 2 ; τ)−G

(
2
2

; τ

)
,

G(6; τ) = G ( 2 2 2 ; τ)−G

(
2 2
2

; τ

)
+G

(
2
2
2

; τ

)
.

Following these formulas, we can then obtain the modularity results.

Corollary 2.6 ([Yu], Modularity). Let k ∈ YT with ki,j = k ≥ 2, then

(i) G(k; τ) ∈ ℚ[G(kl; τ)|l ≥ 1].

(ii) If k = 2, G(k; τ) is quasi modular form, and every quasi modular forms can be written as a
linear combination of these G(k; τ).

(iii) For even k ≥ 4, G(k; τ) is a modular form.

2.2 Algebra structure of Young tableaux

Let ℚYT be the ℚ-vector space generated by the set YT. Let D1, . . . Dr be non-empty subsets of
the skew Young diagram D(λ/µ) that provide a disjoint decomposition of D(λ/µ), i.e., D(λ/µ) =
D1 ⊔ · · · ⊔Dr. A tuple (D1, . . . , Dr) with Da ⊂ D(λ/µ) is called semi standard decomposition of
λ/µ if

(i) D(λ/µ) = D1 ⊔ · · · ⊔Dr,

(ii) the Young tableau (tij) ∈ Y T (λ/µ) with tij = a if (i, j) ∈ Da(a = 1, . . . , r) is semi standard.

Let SSD(λ/µ) denote the set of all semi-standard decompositions of D(λ/µ). For example,

SSD((2, 1)) = SSD
( )

=
{

1 1
2

, 1 2
2

, 1 3
2

, 1 2
3

}
,

where in the case
1 1

2
, D1 = {(1, 1), (2, 1)} = , D2 = {(2, 1)} = .

Define the linear map:

L : ℚYT −→ H1
∗

k = (ki,j) 7−→
∑

((D1,...,Dr)∈SSD(λ/µ))

z∑
(i,j)∈D1

ki,j . . . z
∑

(i,j)∈Dr
ki,j .

Let the space Y be defined as:

Y = ℚYT⧸ker(L).



By definition, we have Y ∼= H1 as ℚ−vector space.
We can express the product of two Schur multiple Eisenstein series as a single Schur multiple

Eisenstein series by placing one Young tableau on the top right of the other:

G

 a b
c d
e
f

; τ

G

(
g h
i

; τ

)
= G


g h
i

a b
c d
e
f

; τ

 .

Following this idea, we define the harmonic product ∗̌ of Young tableaux by attaching one to
the top right of the other. For tuples λ = (λ1, . . . , λn), µ = (µ1, . . . , µn), λ′ = (λ′

1 . . . , λ
′
m),

µ′ = (µ′
1, . . . , µ

′
m) and Young tableaux k = kλ/µ, 𝕙 = 𝕙λ′/µ′ ∈ YT, we define:

k∗̌𝕙 = 𝕝α/β,

where the Young diagram α/β is given by α = (λ′
1 + λ1, λ

′
1 + λ2, . . . , λ

′
1 + λn, λ

′
1, . . . , λ

′
m) and

β = (µ1 + λ′
1, . . . , µn − λ′

1, µ
′
1, . . . , µ

′
m).

Theorem 2.7 ([Yu]). (Y, ∗̌) is a algebra.

Proposition 2.8 ([Yu]). For k, 𝕙 ∈ YT, we have:

L(k∗̌𝕙) = L(k) ∗ L(𝕙).

This proposition shows L is a bijective algebra morphism from (Y, ∗̌) to (H1, ∗).
On the other hand, following the Fourier expansion (2.4), Schur multiple Eisenstein series can

be written as a decomposition of Schur multiple zeta values and Schur type ǧ:

G(kλ/µ; τ) =
∑

µ⊆η⊆λ

ζ(kη/µ)ǧ(kλ/η).

Forcing on the index, we can generalize this decomposition to the ℚYT as the deconcatenation
coproduct ∆̌,

∆̌ : ℚYT −→ℚYT⊗ℚYT

kλ/µ 7−→
∑

µ⊆η⊆λ

kη/µ ⊗ kλ/η.

Proposition 2.9. For k ∈ YT, we have

L(∆̌(k)) = ∆(L(k)).

Note that both the harmonic product and the deconcatenation coproduct are graded by the
number of boxes in the Young tableaux. From this, we obatin the following results:

Theorem 2.10 ([Yu]). (i) (Y, ∆̌) is a coalgebra, which is isomorphic to (H1,∆dec)

(ii) (Y, ∗̌, ∆̌) is a Hopf-algebra, which is isomorphic to (H1, ∗,∆dec).

Further, without considering the linear map L, we can also show the following:

Theorem 2.11 ([Yu]). (ℚYT, ∗̌, ∆̌) is a graded-Hopf algebra.

This theorem implies that for any symmetric multiple Schur function F , we can find two sym-
metric multiple Schur function U and V such that F =

∑
U ⊗V , and F satisfy the stuffle relation.



3 Future work

Future work will be carried out on two fronts in the short term. The first area of focus is the
refinement of Theorem 2.10 and 2.11. One of the most important features of being a Hopf algebra
is that it consists of an antipode S. While we can technically write the antipode on the Hopf-
algebra Y using the inverse of the map L on the antipode in H1

∗. But it does not relate directly to a
transformation of Young tableaux. Our goal is to represent the antipode by cutting and inverting
the Young tableaux, and this representation should be suitable for both ℚYT and Y.

The second area of focus is generalized the shuffle product � to Schur multiple Eisenstein
series and ℚYT. Hirose[HMO] provides a Yamamoto integral representation of the Schur multiple
zeta values with same diagonal variables. Although, for the moment we cannot find an exact
iterated integral representation of Eisenstein series. Bachmann and Tasaka [BT] discovered an
explicit connection between the Fourier expansion of multiple Eisenstein series and the Goncharov
coproduct on Hopf algebras of iterated integrals. We hope to follow these ideas to build a connection
between (ℚYT, �̌, ∆̌Gon) and Schur multiple Eisenstein series. Our task will be to define �̌ and
∆̌Gon in a precise manner and to study the algebra structure of (ℚYT, �̌, ∆̌Gon).
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